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Abstract: Segmentation of anatomical and pathological structures in 
ophthalmic images is crucial for the diagnosis and study of ocular diseases. 
However, manual segmentation is often a time-consuming and subjective 
process. This paper presents an automatic approach for segmenting retinal 
layers in Spectral Domain Optical Coherence Tomography images using 
graph theory and dynamic programming. Results show that this method 
accurately segments eight retinal layer boundaries in normal adult eyes 
more closely to an expert grader as compared to a second expert grader. 
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1. Introduction 

Accurate detection of anatomical and pathological structures in Spectral Domain Optical 
Coherence Tomography (SDOCT) images is critical for the diagnosis and study of ocular 
diseases [1,2]. Commercial OCT systems are equipped with segmentation software mainly 
targeted to measure the nerve fiber layer and the total retinal thicknesses, with varying rates of 
success [3]. As for the other ocular features of interest, such as the photoreceptor layer 
thickness, quantitative data is primarily obtained by manual segmentation [4]. Manual 
segmentation is not only demanding for expert graders, but is also extremely time-consuming 
for clinical use, or for large scale, multi-center trials. Furthermore, the inherent variability 
between graders yields subjective results. 

This paper presents a fully automatic approach for segmenting layered structures in ocular 
images using graph theory and dynamic programming that significantly reduces the 
processing time required for image segmentation and feature extraction. While the proposed 
technique can be generalized for segmenting any layered structure in images of any imaging 
modality, we focus on the segmentation of retinal layers in SDOCT images. Figure 1 shows a 
cross-sectional SDOCT image of the retina centered at the macula, annotated with the targeted 
eight layer boundaries delineated by a consensus of the expert graders advising this study (see 
Section 4.1). Knowledge of these layer boundary positions allows for retinal layer thickness 
calculations, which are imperative for the study and detection of ocular diseases. 

 

Fig. 1. Target retinal layers of a cross-sectional SDOCT image (B-scan) centered at the macula. 
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Previous reports have addressed different approaches to segmenting retinal layer 
boundaries with varying levels of success. Fernández proposed a combined structure tensor 
and complex diffusion filtering methodology in place of traditional thresholding [5]. Ishikawa 
implemented a column-wise intensity profiling system for layer classification with mean 
filtering techniques for de-speckling [6], and Fabritius introduced an alternative method for 
segmenting the ILM and RPE based on pixel intensity variations [7]. Active contours were yet 
another method explored by Yazdanpanah for layer segmentation of rodent images [8] and by 
Farsiu for the segmentation of drusen [9]. Mishra extended the traditional active contour with 
a two-step kernel-based optimization scheme [10]. 

Graph-cut segmentation is a technique that has proven to be successful in a variety of 
medical image segmentation applications; however it has only very recently been introduced 
into ophthalmic SDOCT segmentation applications. Haeker / Garvin utilized radial scans to 
generate a composite 3-D image and performed a 3-D graph search of the retinal layers 
[11,12], and Lee used multi-scale, 3-D graph search for segmenting the optic nerve head [13]. 
Finally, Tolliver employed the spectral rounding solution of the grouping problem to 
effectively segment layers in a rather mathematically complex framework [14]. This paper 
presents a conceptually simpler, yet accurate, alternative approach to graph-cut segmentation 
using dynamic programming [15]. 

Our simple algorithmic framework enables us to effectively address previous sources of 
instability including the merging of layers at the fovea [5,8], uneven tissue reflectivity [6], and 
the presence of pathology [5]. Moreover, special handling is included for issues such as vessel 
hypo-reflectivity, where structural information is lost due to shadowing of the vessels. 
Although previous works address automatic vessel detection [16], we incorporate a simple 
vessel detection algorithm for more accurate segmentation results. Furthermore, our algorithm 
is an adaptable framework for images with pathology such as drusen, as well as pediatric and 
corneal images, among others. Finally, while many successful segmentation techniques rely 
on volumetric data to accurately segment anatomic structures (e.g [12,13].), our algorithm is 
able to accurately segment features of interest in individual B-scans, which is important when 
volumetric data is not available. 

The organization of this paper is as follows. Section 2 discusses the general theory behind 
graph segmentation as well as our generalized method for automatically segmenting layered 
structures, and Section 3 shows an implementation of the algorithm for segmenting eight 
retinal layer boundaries in normal adult eyes. Section 4 compares our automated results 
against expert manual segmentation, and shows the algorithm applied to other types of images 
such as retinal pediatric and pathological eyes, as well as the cornea. 

2. A generalized layer segmentation algorithm 

This section proposes a generalized method for segmenting layered structures. We describe 
the high-level issues when implementing a graph-based segmentation algorithm and describe 
our proposed solutions. Later, in Section 3, we describe the algorithmic implementation of 
these solutions in detail for segmenting retinal layers in SDOCT images. The following 
schematic (Fig. 2) outlines the core steps in our layer segmentation algorithm, which are 
discussed in the following subsections. 

 

Fig. 2. A generalized layer segmentation algorithm schematic. 
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2.1 Graph representation and weight calculation 

We represent each image (e.g. an SDOCT B-scan) as a graph of nodes, where each node 
corresponds to a pixel. The links connecting the nodes are called edges. A set of connected 
edges form a pathway for one to travel across the graph. Weights can be assigned to 
individual edges to create path preferences. To travel across the graph from a start node to an 
end node, the preferred path is the route in which the total weight sum is at a minimum. This 
resulting path is the cut which segments one region from another. For our problem, 
boundaries between retinal layers correspond to the preferred paths (cuts) on an SDOCT B-
scan. 

The key to accurately cutting a graph is to assign the appropriate edge weights. Common 
metrics for varying weight values include functions of distances between pixels or differences 
between intensity values [17]. As long as the feature to be segmented has characteristics 
unique to its surroundings, low weights can be assigned to the borders of that feature to 
distinguish it from the rest of the image. 

Once appropriate weights are assigned to the edges, computationally efficient techniques 
such as Dijkstra's algorithm [15] can be used to determine the lowest weighted path of a graph 
between arbitrary endpoints. Figure 3 shows example weights for three connected nodes. To 
find the minimum weighted path using Dijkstra's algorithm, the weight values must be 
positive and range from 0 to 1, where an edge weight of zero indicates an unconnected node 
pair. This table of graph weights is defined as the adjacency matrix of a graph, where one axis 
represents the start node and the other axis indicates the end node. This example illustrates 
node 1’s preference for node 3 due to its lower weight value compared to node 2. 

 

Fig. 3. Example graph weights (adjacency matrix) for three connected nodes. 

2.2 Automatic endpoint initialization 

While a graph might consist of several layered structures, segmenting a specific layer requires 
the selection or estimation of the corresponding layer’s start and end nodes. In this section, we 
propose an automatic initialization method that bypasses the need for manual endpoint 
selection. 

Our initialization algorithm is based on the assumption that the layer to be segmented 
extends across the entire width of the image. Since Dijkstra’s algorithm prefers minimum-
weighted paths, we add an additional column of nodes to both sides of the image with 
arbitrary intensity values and minimal weights wmin assigned to edges in the vertical direction. 
Note that, wmin is significantly smaller than any of the non-zero weights in the adjacency 
matrix of the original graph. In doing so, the nodes in the newly added columns maintain their 
connectivity, and the cut is able to traverse in the vertical direction of these columns with 
minimal resistance. This allows for the start and end nodes to be assigned arbitrarily in the 
newly added columns, since the cut will move freely along these columns prior to moving 
across the image in the minimum-weighted path. Once the image is segmented, the two 
additional columns can be removed, leaving an accurate cut without endpoint initialization 
error. 

Figure 4 is an example image segmented using the automatic initialization technique. Two 
vertical columns are added to either side of the image with arbitrary values (here, the 
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maximum intensity) and minimal vertical edge weights. Furthermore, the start and end points 
are initialized to the top left and bottom right corners. Edges are assigned weights as a 
function of pixel intensity, where darker pixels result in a lower weight. The red line 
represents the resulting cut using Dijkstra’s algorithm. The newly added columns can then be 
removed, showing an accurate cut despite arbitrary endpoint assignments. 

 

Fig. 4. An example segmentation using automatic endpoint initialization. 

2.3 Search region limitation 

Oftentimes the feature to be segmented is in the neighborhood of extraneous structures with 
similar characteristics (e.g. the IPL and OPL regions of the retina). To prevent the algorithm 
from accidentally segmenting these structures in place of the target feature, it is helpful to 
limit the graph to a valid search space that excludes any extraneous matter. In terms of graph 
theory, this means that the weights of the edges in these invalid regions should be removed 
prior to cutting the graph. For example, if the INL region is already accurately segmented, we 
may declare all nodes belonging to the INL or regions above it as invalid, when searching for 
the OPL border. 

In practice, determining regions which are invalid can be complex and relies on prior 
knowledge about the image and its features. Detailed methods for limiting search regions in 
retinal SDOCT images will be discussed in Section 3.4, and an illustrative example is shown 
in Fig. 8 of Section 3.3. 

2.4 Finding the minimum-weighted path 

Given a graph with weights associated to edges, the graph can be cut by determining the 
minimum weighted path that connects two endpoints. In this paper, we utilize Dijkstra's 
algorithm [15] for finding the minimum path. However, other optimization algorithms which 
utilize graph theory and adjacency matrices (e.g. the max-flow-min-cut technique [16]) may 
also be suitable for segmenting the image. Selection of the appropriate algorithm is 
determined on a case by case basis. The benefits and drawbacks of each method are discussed 
in the literature [18–22]. 

2.5 Feedback and iteration 

Once the first layer boundary is segmented on the image, the process can be repeated 
recursively by limiting the search space based on the previous cut to segment a new layer 
boundary. The resulting effect is an iterative method in which retinal layer boundaries are 
segmented by order of prominence. Note that, our algorithm is designed so that the rare cases 
of inaccurate segmentation of one layer do not necessarily affect accurate segmentation of the 
ensuing layers. 

3. Implementation for segmenting eight retinal layer boundaries 

This section details an implementation of the generalized segmentation algorithm discussed in 
Section 2 that automatically segments eight retinal layer boundaries in SDOCT images. The 
data to be segmented is assumed to consist of raster scanned images densely sampled in the 
lateral (B-scan) dimension. Each B-scan is segmented independently from other images 
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within the same volume, and is assumed to be centered at the macula without the optic nerve 
head present. Figure 5 below shows a full schematic of this algorithm, and the following 
subsections discuss each of the outlined steps. 

 

Fig. 5. Eight retinal layer boundary segmentation algorithm schematic for SDOCT images. 

3.1 Image flattening 

As mentioned in Section 2, a graph is segmented by computing the minimum weighted path 
from a start node to an end node. Inherent in this method is the tendency for the shortest 
geometric path to be found, since fewer traversed nodes results in a lower total weight. As a 
result, features with strong curvature or other irregularities, even with relatively strong 
gradients, are disadvantaged since their paths do not reflect the shortest geometric distance. 
Alternative to the normalized-cut approach [17], a natural solution to this dilemma is to 
transform the image such that the desired path is shortened. 

To account for the natural retinal curvature seen in SDOCT images, we flatten the image 
to avoid inaccurate shortcuts across the layers when segmenting. Figure 6 demonstrates retinal 
flattening, where Fig. 6b is the flattened version of the original image, Fig. 6a. 
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Fig. 6. Image flattening. (a) The original retinal SDOCT image. (b) The flattened image. 

We created the flattened image based on a pilot estimate of the RPE layer. Our pilot 
estimate is based on prior knowledge that the RPE layer is one of the most hyper-reflective 
layers within a retinal SDOCT image. Thus, after denoising the SDOCT image with a 
Gaussian filter, we tentatively assign the brightest pixel in each column as an estimate of the 
RPE. We locate outlier pixels, often associated with the NFL, by searching for discontinuities 
greater than 50 pixels in the RPE estimate. These outliers are removed from the RPE estimate 
along with pixels lying in columns that present a significantly lower signal-to-noise ratio. We 
fit a second order polynomial to the remaining valid RPE points, and shift each column up or 
down such that the RPE points lie on a flat line. Regions of the flattened image that are 
outside the original field of view are extrapolated from the mirror image of the valid pixels. 
This avoids border artifacts when later filtering the image. The extrapolated pixels are 
excluded from weight calculations, and the resulting image is a smoothly flattened retina. 

3.2 Calculate graph weights 

Graph weights in the literature [17] often include two terms representing the geometric 
distance and intensity difference of the graph nodes. Given the relatively high resolution of an 
SDOCT retinal scan, most features of interest have a smooth transition between neighboring 
pixels. Therefore, each node is associated with only its eight nearest neighbors, sparing us 
from incorporating geometric distance weights. All other node pairs are disconnected, 
resulting in a sparse adjacency matrix of intensity difference graph weights. For example, an 
[M × N] sized image has an [MN × MN] sized adjacency matrix with MNC filled entries, 
where C (here eight) is the number of nearest neighbors. We then define our graph to be 
undirected, thus halving the size of the adjacency matrix. 

In SDOCT images, retinal layers are primarily horizontal structures distinguishable by a 
change in pixel intensity in the vertical direction. Weights can therefore be calculated solely 
based on intensity gradients as follows: 

 ( )  where2 ,wggw minbaab ++−=   (1) 

wab  is the weight assigned to the edge connecting nodes a and b, 

ga  is the vertical gradient of the image at node a, 

gb  is the vertical gradient of the image at node b, 

wmin  is the minimum weight in the graph, a small positive number added for 
system stabilization. 

Equation (1) assigns low weight values to node pairs with large vertical gradients. In our 

implementation, ga and gb are normalized to values between 0 and 1, and wmin = 1 × 10
−5

. 
These weights are further adjusted to account for the directionality of the gradient. To 
segment the vitreous-NFL layer boundary, for example, it is known that the boundary exhibits 
a darker layer above a brighter layer [12]. In contrast, the NFL-GCL layer boundary has a 
light-to-dark layer change. As a result, edge maps such as [1;-1] and [-1;1] can be utilized 
when calculating the gradient to extract the appropriate layers. Finally, for automatic endpoint 
initialization as discussed in Section 2.2, the end columns are duplicated and added to either 
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side of the image with vertical edge weights equal to wmin and all other weights following  
Eq. (1). 

Our implementation for segmenting retinal layers in SDOCT images yields two undirected 
adjacency matrices sensitive to either dark-to-light or light-to-dark intensity transitions. For 
layer boundaries exhibiting a darker layer above a lighter layer such as the vitreous-NFL, 
INL-OPL, IS-OS, and OS-RPE boundaries, we utilize the dark-to-light adjacency matrix. In 
contrast, for the NFL-GCL, IPL-INL, OPL-PRNL, and RPE-choroid boundaries, which 
exhibit a lighter layer above a darker layer, we use the light-to-dark adjacency matrix. 

Figure 7 shows two complementary gradient images used for calculating edge weights. 
Figure 7a is the dark-to-light gradient image used to generate weights for segmenting the 
boundary between a darker layer above a lighter layer, and Fig. 7b is the light-to-dark gradient 
image for boundaries separating a lighter layer above a darker layer. 

 

Fig. 7. Gradient images used for calculating graph weights for Fig. 6b. 
(a) Dark-to-light image for segmenting a darker layer above a lighter layer. (b) Light-to-dark 
image for segmenting a lighter layer above a darker layer. 

3.3 Segmenting the vitreous-NFL and the IS-OS 

We implement the segmentation of multiple layers in an iterative process, where layer 
boundaries are cut by order of prominence. The vitreous-NFL and IS-OS are the two most 
prominent layer boundaries in an SDOCT retinal image due to their high contrast in pixel 
intensity. Our algorithm utilizes Dijkstra’s method and the dark-to-light graph weights to find 
the lowest-weighted path initialized at the upper left and the bottom right pixels of the image. 
The resulting cut is either the vitreous-NFL or the IS-OS. 

The vitreous-NFL is the topmost layer of the retina on a B-scan with little hyper-
reflectivity above it, unlike the IS-OS. The region directly above the cut is therefore inspected 
for bright layers in order to determine which layer boundary was segmented. If there is no 
hyper-reflectivity present in the region, we then conclude that the segmented layer is the 
vitreous-NFL. Otherwise, we infer that the IS-OS is detected. In order to determine the 
presence or absence of hyper-reflectivity, the image is first low-pass filtered with a Gaussian 
kernel and thresholded using Otsu’s method [23] to generate a binary mask. This step isolates 
the NFL-OPL and IS-RPE complexes. The fraction of bright pixels in the region above the cut 
is then calculated for the binary image. If the fraction exceeds 0.025, then we conclude that 
the segmented layer boundary is the IS-OS due to the presence of the NFL-OPL complex. 
Otherwise, we conclude that the vitreous-NFL layer boundary was segmented. 

Following the limited search space concept described in Section 2.3, if the IS-OS layer 
boundary was first segmented, the search space is limited to the region 20 pixels above the 
segmented line so the vitreous-NFL can be segmented next. In contrast, if the vitreous-NFL 
was segmented first, then the search space is limited to the region 40 pixels below it to 
segment the IS-OS. Consequently, the algorithm successfully segments the two most 
prominent layer boundaries. 

Figure 8a shows an SDOCT B-scan, where the vitreous-NFL is first segmented, given a 
search space of the entire image. The search region is then limited to the space shown in  
Fig. 8b, resulting in the segmented IS-OS line. This example also shows the result of the 
automatic endpoint initialization implemented in Section 3.2. Lastly, note that the pilot IS-OS 
layer detected at this stage may be inaccurate due to IS-OS and RPE layer confusion. Such 
errors are corrected in Section 3.8. 

#131667 - $15.00 USD Received 15 Jul 2010; revised 18 Aug 2010; accepted 19 Aug 2010; published 27 Aug 2010
(C) 2010 OSA 30 August 2010 / Vol. 18,  No. 18 / OPTICS EXPRESS  19420



 

Fig. 8. Segmentation of Fig. 6b using Dijkstra’s algorithm, automatic endpoint initialization, 
and search space limitation. (a) The vitreous-NFL layer boundary segmented. (b) The pilot IS-
OS layer boundary segmented. 

3.4 Search region limitation using connectivity-based segmentation 

While the vitreous-NFL and IS-OS are easily identifiable due to their prominent hyper-
reflectivity, the remaining layer boundaries are not as distinct. To accurately segment these 
remaining layers, we introduce a method for defining a valid and narrow search region that 
isolates the layer boundaries of interest. Our method is implemented in two steps. We first 
develop a pilot estimate of pixel clusters corresponding to the hyper-reflective layer regions 
using a column-wise intensity profiling technique. Then, we connect and modify clusters 
associated with a particular layer, in what we call the connectivity-based step. We exploit the 
resulting layer estimations to limit search regions in Sections 3.6 to 3.8, in which three of the 
estimated layer boundaries are considered at a time. We use the top and bottom of these layers 
as the search space area for identifying the cut that represents the middle layer. The two 
column-wise intensity profiling and connectivity-based segmentation steps are described in 
the following paragraphs. 

First, we enhance the contrast between the light and dark layers. To achieve this, we 
coarsely denoise the image with a rectangular averaging filter of size 3 × 19 pixels. Next, we 
threshold this image by setting the values of pixels that are smaller than the median of their 
corresponding column to zero. An example contrast-enhanced image is shown in Fig. 9b. 

 

Fig. 9. Contrast enhancement. (a) A flattened retinal SDOCT image. (b) The contrast-enhanced 
image. 

A binary mask is then generated to isolate the hyper-reflective retinal layers. This is done 
by taking the 1-D, column-wise, second-order derivative of the contrast-enhanced image to 
boost layer boundaries [24]. Next, we create a pilot binary mask by thresholding the edge-
enhanced image at zero. Then, to remove outliers in each column, we set all non-zero clusters 
less than 5 pixels tall to zero and join the remaining clusters that are closer than 3 pixels from 
each other. The resulting mask corresponds to the hyper-reflective layers in the retina (i.e. 
NFL, IPL, OPL, IS-OS, RPE). A horizontal 1-D closing operation with a kernel of 10 pixels 
in size is performed on the image as a whole to close gaps, and any clusters less than 500 
pixels in size are removed. The result is a coarse binary mask of the hyper-reflective retinal 
layers, as shown in Fig. 10a. 

The layers in some columns of the coarse binary mask might be blended together, as seen 
in the top layers of Fig. 10a. We distinguish these merged hyper-reflective layers by 
interpolating the approximate location from neighboring columns in which they are detached. 
This is done by first detecting hyper-reflective pixel clusters with holes corresponding to a 
partially detected middle hypo-reflective layer. For example, note the merged NFL and IPL 
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clusters and the holes corresponding to the GCL layer in Fig. 10a. We simply cut the merged 
layers by interpolating the lower boundaries of corresponding holes, separating all layers as 
shown Fig. 10b. Note that, the interpolating line may not break all merged layers into two 
clusters, as is the case in the foveal region of Fig. 10b. We separate these areas from the 
original cluster with vertical lines. 

 

Fig. 10. (a) A binary mask of the filtered image in Fig. 9b. The red arrows mark the location of 
the holes corresponding to the GCL-IPL complex. (b) A zoomed in binary mask with 
disconnected layers achieved by interpolating the lower boundaries of corresponding holes 
from Fig. 10a. The green arrows point to vertical breaks used to separate clusters that were not 
disconnected through interpolation. 

The algorithm then examines each column in the original binary mask (Fig. 10a) and 
tentatively assigns each cluster of pixels within the column to a particular anatomical layer. 
The available choices for hyper-reflective layers are the NFL, IPL, OPL, IS-OS, RPE, or “no 
assignment” in the case that the rules fail to reach a reasonably certain assignment. To do this, 
the number of clusters is counted for each column. For columns with five clusters, the retinal 
layer assignments are straightforward since there is a one to one correspondence with the 
targeted layers. To determine the missing layers in columns with fewer than five clusters, we 
take advantage of our prior knowledge of the layer order and approximate layer distances. For 
instance, we assume that the OS-RPE is at least 30 pixels below the vitreous-NFL, and the 
distance between the RPE and IS-OS layers is less than 10 pixels. The end result is the 
tentatively-assigned retinal layers shown in Fig. 11a. 

To correct possible conflicts in the column-wise layer assignments where a spatially 
connected group of pixels may have tentative assignments to different retinal layers  
(Fig. 11a), we devise a voting scheme. We reassign all connected pixels from a 2-D binary 
cluster to a single retinal layer based on the majority tentative assignment of the pixels in that 
cluster. The result from this cluster-based refinement method is shown in Fig. 11b. 

 

Fig. 11. Retinal layer assignments, where blue = NFL, green = IPL, yellow = OPL, cyan =  
IS-OS, magenta = RPE. (a) Column-wise layer assignments of the mask in Fig. 10a. Note the 
conflicts in the top three layer assignments. (b) Cluster layer assignments of the mask in  
Fig. 10b. 

The boundaries of the NFL, IPL, and OPL are determined by finding the top and bottom 
edges of the assigned pixel clusters (Fig. 11b). The boundaries of the IS-OS and RPE are 
found by first distinguishing the two layers from each other. The brightest pixels in the 
filtered image (Fig. 9b) that are a) given the IS-OS / RPE layer assignment in the original 
mask (Fig. 10a), and b) furthest from the top of the image, are assigned as the center of the 
RPE. This center RPE line is then smoothed with a median filter. The RPE edges are located 
by performing a focused search for large changes in gradient near the center RPE line on the 
filtered image (Fig. 9b). The same is done to find the IS-OS edges by searching just above the 
RPE layer, resulting in the estimated retinal layers displayed in Fig. 12. Because these layer 
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estimations still contain errors, they are refined in the subsequent subsections using Dijkstra’s 
method, with adjacent layer estimations as search region boundaries. 

 

Fig. 12. Connectivity-based segmentation of retinal layers using the layer assignments from 
Fig. 11b. 

3.5 Vessel detection 

Retinal SDOCT images with prominent vessels pose a challenge when segmenting the NFL-
GCL boundary, because they result in hyper-reflective bulges in the NFL layer as shown in 
Fig. 13a. In a very recent study, retinal blood vessels are located through iterative polynomial 
smoothing [25]. To address this problem, we incorporate a method that detects major vessels 
on individual B-scans, making Dijkstra’s algorithm indifferent to bulges in the NFL layer. 

In the first step, we tentatively segment the RPE-choroid layer boundary, where the pilot 
IS-OS is used to limit the search region. Then, a Gaussian filter is applied to the image, and 
columns ranging from the RPE-choroid to 15 pixels above are summed. Columns exhibiting 
low sum values, corresponding to the dark areas from vessel shadowing, are defined as the 
vessel regions. 

In the second step, we set edge weights in the vessel regions to wmin prior to segmenting 
the NFL-GCL. Upon updating the graph weights, the NFL-GCL cut will be indifferent to 
these vessel regions. Figure 13b demonstrates the effectiveness of the vessel correction 
algorithm in improving the accuracy of the NFL-GCL boundary detection, which is described 
in Section 3.6. 

 

Fig. 13. Vessel detection. (a) NFL-GCL without vessel detection. (b) NFL-GCL with vessel 
detection. 

3.6 Segmenting the NFL-GCL 

After incorporating minimum weights in the vessel regions and estimating the layer 
boundaries using connectivity-based segmentation, we form a pilot estimate of the NFL-GCL 
layer boundary using Dijkstra’s algorithm and the updated light-to-dark graph weights. We 
limit the search region using the vitreous-NFL from Section 3.3 and the estimated IPL-INL 
from Section 3.4 prior to cutting. Errors may arise, however, due to the similar light-to-dark 
gradient characteristics of the NFL-GCL and IPL-INL layer boundaries. Moreover, the NFL 
layer is thicker on the nasal side of the fovea that is closer to the optic nerve head, 
necessitating an asymmetric, larger search region. 

We include a technique in our algorithm to account for the NFL-GCL / IPL-INL 
confusion. First, the temporal side is predetermined based on knowledge of the scan direction 
(horizontal / vertical) and which eye (left / right) was imaged. For instance, horizontal scans 
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of the left eye exhibit layer thinning on the right side of the fovea, whereas vertical scans of 
the left eye show layer thinning on both sides of the fovea. 

Using the vitreous-NFL from Section 3.3 and the preliminary NFL-GCL cut, we estimate 
the NFL thickness. Moving across the image from the thicker to the thinner side of the layer, 
we find the first instance where the thickness drops below a threshold of 6 pixels and mark it 
as the divide between the thick and thin sides. We limit the search region on the thinner NFL 
side to 10 pixels below the vitreous-NFL, and the search region on the thicker side is 
expanded from 5 pixels below the vitreous-NFL to 5 pixels below the preliminary NFL-GCL 
cut. Figure 14 shows the resulting NFL-GCL segmentation before (Fig. 14a) and after  
(Fig. 14b) correcting the layer boundary. 

 

Fig. 14. NFL-GCL segmentation. (a) NFL-GCL before correction. (b) NFL-GCL after 
correction. 

3.7 Detecting the fovea and segmenting the IPL to ONL layer boundaries 

It is important to detect whether the image contains the fovea, since layers tend to merge 
together and become increasingly indistinguishable near the fovea. Due to inaccuracies in 
estimating layer boundaries, errors similar to the example in Fig. 15a often appear in the pilot 
segmentations for B-scans containing the fovea. To address such problems, we first perform a 
pilot estimate of the IPL-INL, INL-OPL, and OPL-ONL layer boundaries using the 
appropriate weighting matrix (light-to-dark or dark-to-light) and Dijkstra’s algorithm. We 
limit the search regions using the previously segmented lines and the estimated layer 
boundaries from Section 3.4. For example, the IPL-INL search region is limited to 3 pixels 
below the NFL-GCL, and above the estimated IPL-INL or INL-OPL boundaries, whichever is 
higher. 

In the next step, we estimate the presence and location of the fovea by calculating the 
NFL, GCL-IPL, INL, and OPL layer thicknesses from the tentatively segmented layers. We 
then assign columns with a mean layer thickness of less than 5 pixels as the foveal region. 
Since this region may not necessarily be centered at the fovea, we locate the center by 
calculating the vitreous-NFL to IS-OS thickness, where the column containing the minimum 
thickness is located and expanded by 20 pixels on either side. If this region coincides with the 
foveal region detected prior, then it is included as a part of the fovea. 

After locating the fovea, we define more accurate search regions to account for foveal 
layer merging. This is done by maintaining the position of the lower boundary of the search 
space, however expanding the top boundary of the search space upward to reach the vitreous-
NFL when re-segmenting the IPL-INL, INL-OPL, and OPL-ONL. The resulting 
segmentations are more accurate, as depicted in Fig. 15b. 

 

Fig. 15. Fovea correction. (a) Segmented image before correction. (b) Segmented image after 
correction. 

#131667 - $15.00 USD Received 15 Jul 2010; revised 18 Aug 2010; accepted 19 Aug 2010; published 27 Aug 2010
(C) 2010 OSA 30 August 2010 / Vol. 18,  No. 18 / OPTICS EXPRESS  19424



3.8 Segmenting the IS to choroid layer boundaries 

The remaining lower boundaries (IS-OS, OS-RPE, and RPE-choroid) are segmented in a 
straightforward manner by exploiting the previously estimated layer boundaries, the 
connectivity-based search regions, and Dijkstra’s algorithm. In particular, we improve upon 
the IS-OS estimate from Section 3.3 to remove any possible IS-OS / OS-RPE confusion. Our 
implementation re-segments the IS-OS with a modified search region ranging from 4 pixels 
below the segmented OPL-ONL line to 2 pixels above the estimated OS-RPE from Section 
3.4. 

After segmenting all layer boundaries, we unflatten the image by shifting the pixels up or 
down in the direction opposite to image flattening, thereby restoring the original curvature. 
The result is an algorithm that segments 8 retinal layer boundaries on a given SDOCT image. 

4. Experimental results 

4.1 Automated versus manual segmentation study 

To determine the accuracy of the eight retinal layer boundary segmentation algorithm on 
SDOCT images, we conducted an automatic versus manual segmentation study. This study 
included macular scans from normal adult subjects segmented manually by an expert grader 
and automatically using our software. To estimate inter-expert-observer variability, a subset of 
scans was graded manually by a second expert. Both expert graders were OCT readers 
certified by the Duke Reading Center. 

Volumetric scans (6.7 x 6.7 mm) were acquired from 10 normal adult subjects in an IRB 
approved protocol using Bioptigen Inc (Research Triangle Park, NC) SDOCT imaging 
systems with an axial full-width at half-maximum (FWHM) resolution of 4.6µm (in tissue) 
and an axial pixel sample spacing of 3.23 µm. Five of the volumetric scans had lateral and 
azimuthal pixel sampling spacings of 6.7 µm and 67 µm (1000 A-scans × 100 B-scans), 
respectively. The other 5 volumetric scans had resolutions of 13.4 µm and 33.5 µm (500  
A-scans × 200 B-scans) to validate the algorithm on varying lateral and azimuthal image 
resolutions. Note that the volumetric scans were comprised of a series of cross-sectional 
images, or B-scans, where the number of A-scans represents the image width. 

To compare the automatic versus manual segmentation results, 11 B-scans from each data 
set were selected with the sixth B-scan centered at the fovea and subsequent B-scans 
departing from the fovea at a linear rate. The inter-expert comparison included a subset of 3 
B-scans from each set of 11 B-scans. The three B-scans chosen from each set included the 
foveal scan and two other randomly selected B-scans. Due to a prominent, irregular imaging 
artifact in one of the B-scans and a gross manual segmentation error in another B-scan, a total 
of two B-scans were removed from the study. Furthermore, 8 B-scans were used as training 
data for bias correction as will be discussed below. As a result, 100 B-scans (10 B-scans per 
data set) were observed for the automatic versus manual comparison and a subset of 29  
B-scans (3 B-scans per data set with the exception of one) were included in the inter-expert 
comparison. 

Prior to automatic segmentation, ten percent of the image width was cropped from either 
side of each image to remove regions with low signal. Eight retinal layer boundaries were 
segmented automatically on 108 B-scans using a MATLAB software implementation of our 
algorithm. The average computation time was 9.74 seconds per image (64-bit OS, Intel Core2 
Duo CPU at 2.53 GHz, and 4 GB RAM). The same eight layers were manually traced by two 
expert graders for the subset of 29 B-scans. Furthermore, these certified graders traced layers 
using their own expertise and were not allowed to consult with each other. 

In order to closely match the segmentation results of an expert grader, the automatic 
segmentation results were smoothed using a moving average filter. This was necessary 
because the automatic algorithm tightly followed gradient changes, whereas manual 
segmentation tended to be smooth. Furthermore, each expert grader exhibited a bias when 
tracing layer boundaries, either consistently following above or below by a constant distance 
from the actual boundary. As a result, training was performed on the 8 test images to 
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determine any segmentation biases from the manual grading. Each automatically segmented 

layer in the set of 100 B-scans was then shifted up or down by bias values of −0.9, −0.8, −1.0, 

−1.3, −1.6, −1.3, −0.3, and −0.6 pixels, respectively, in order to mimic the segmentation 
behavior of the manual grader. 

Upon smoothing the layers and correcting for bias, we calculated the thicknesses of the 7 
retinal layers for each of the 100 B-scans between neighboring layer boundaries. The average 
difference in layer thickness between the manual and automatic estimates was computed for 
each layer of each B-scan. The same was done to compare the two manual expert graders for 
29 B-scans. The absolute mean and standard deviation of these differences across all B-scans 
were calculated and are shown in Table 1. Column I shows the absolute average thickness 
difference for the various retinal layers as measured by two expert manual graders for 29 B-
scans. Column II displays the same layer thickness difference calculation for the 29-Bscans, 
but with layer thicknesses determined by the automatic segmentation software and one of the 
two manual graders. Column III reports the thickness differences between the automatic and 
manual grader for the larger set of 100 B-scans. 

Table 1. Differences in retinal layer thickness segmentation between two expert manual 
graders for 29 B-scans (Column I), as compared to the thickness differences between the 
automatic segmentation and one expert manual grader of the same 29 B-scans (Column 

II). Column III reports the automatic and manual segmentation (of one grader) 
differences for a larger subset of 100 B-scans. Each pixel is 3.23 µm. 

Retinal Layer Thickness Differences 

 
Comparison of Two 

Manual Expert 
Graders 

Comparison of Automatic and 
Manual Segmentation 

 Column I Column II Column III 

 29 B-scans 100 B-scans 

Retinal 
Layer 

Mean 
Difference 

(Pixels) 

Standard 
Deviation 
(Pixels) 

Mean 
Difference 

(Pixels) 

Standard 
Deviation 
(Pixels) 

Mean 
Difference 

(Pixels) 

Standard 
Deviation 
(Pixels) 

NFL 1.73    0.90     0.99     0.76      0.88     0.68 

GCLIPL 1.06    0.95     0.57     0.48      0.77     0.65 

INL 2.22    1.30     1.07     0.87      0.98     0.74 

OPL 1.90    1.53     1.64     1.08      1.48     1.05 

ONL-IS 1.63    1.19     1.40     1.06      1.20     0.92 

OS 1.11    0.88     0.92     0.80      0.88     0.73 

RPE 2.21    1.20     0.96     0.69      0.99     0.87 

Total Retina 2.22    1.00     0.92     0.83      0.94     0.82 

Among all data sets, maximum differences for the 8 retinal thicknesses reported in 
columns I and II of Table 1, (Column I, Column II), were as follows: NFL (10,18.7),  
GCL-IPL (11,11.8), INL (12,9.7), OPL (11,15.2), ONS-IS(10,11.1), OS (8,7.6), RPE (11,7.9), 
and total retina (11,12). 

The results in Table 1 show that the automatic algorithm accurately segmented seven 
retinal layers in normal adult eyes more closely to an expert grader as compared to another 
grader. For example, two manual graders differed in their segmentation of the total retina by 
an average of 2.22 pixels, whereas our fully automatic algorithm differed from one of the 
manual graders by an average of 0.95 pixels. Figure 16 displays the qualitative results, with 
the automatic segmentation (cyan) overlaid with the manual segmentation (magenta) results. 
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Fig. 16. Comparison of automatic (cyan) versus manual (magenta) segmentation. 

To test the repeatability of the proposed method, we captured five volumetric scans of one 
normal subject with lateral and azimuthal pixel sampling spacings of 6.7 µm and 67 µm  
(1000 A-scans × 100 B-scans), respectively. The subject rested between each volumetric 
image capture. In accordance with longstanding clinical convention (described in the AREDS 
study [26]), we calculated the volume of each retinal layer within the 3 mm diameter circle 
around the fovea. We selected one of these scans as the anchor and compared the 
automatically measured volume of each of its layers with those of the other scans. We 
calculated the normalized mean and standard deviation of the differences in estimating the 
volume of each layer. The results, (mean, standard deviation), were as follows: NFL 
(3.88%,3.43%), GCL-IPL (1.70%,1.99%), INL (3.37%,3.43%), OPL (2.20%,2.01%), ONS-
IS(1.02%,0.76%), OS (0.84%,0.61%), RPE (0.16%,0.18%), and total retina (0.26%,0.09%). 
Note that, such slight differences are mainly due to the uncontrollable patient motion that 
occurs during volumetric scans and existence of significant pre-retinal image artifacts in some 
of the captured B-scans. 

4.2 Other segmentation results 

Sections 3 and 4.1 discuss the algorithm implemented for segmenting retinal layers on 
macular, normal adult SDOCT images. We have generalized the algorithm in Section 2 for 
different types of layered structures. Figure 17 below shows the segmentation results for a 
variety of SDOCT image types, including retinas with Level 3 aged-macular degeneration 
(Fig. 17a-b), a retina with Level 3 AMD with poor image quality (Fig. 17c), a pediatric retina 
(Fig. 17d), a pediatric retina with edema (Fig. 17e), and the cornea (Fig. 17f). The extension 
and validation of our algorithm for all these different diseases is out of the scope of this 
preliminary paper, and will be fully addressed in our upcoming publications. 
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Fig. 17. Segmentation of anatomical and pathological images of the eye. (a-c) Level 3 aged-
macular degeneration retinas with drusen. (d) Pediatric retina. (e) Pediatric retina with edema. 
(f) Cornea. 

5. Conclusion 

The automatic algorithm accurately segmented eight retinal layer boundaries on SDOCT 
images of normal eyes, with consistent results that matched an expert grader more closely 
than a second grader. This is highly encouraging for both reducing the time and manpower 
required to segment images in large-scale ophthalmic studies. 

The accuracy of the proposed algorithm has yet to be proven for other ocular imaging 
scenarios, including pathological eyes, pediatric eyes, corneal images, and images from other 
SDOCT systems. To achieve this, weighting schemes in addition to vertical gradients, such as 
distance penalties, can be included in adjacency matrix calculations, and alternative 
approaches for search space limitation can be investigated. In addition, since this algorithm 
targets 2-D image segmentation, information from neighboring B-scans can be utilized in 
correcting for outliers, or the algorithm can be readily extended to 3-D segmentation (indeed 
with a significant increase in computational complexity). To make the proposed method more 
suitable for use in clinic, its computational complexity should be reduced. We expect to 
achieve this by exploiting more efficient computer programming languages (e.g. C instead of 
MATLAB) and taking advantage of Graphics Processing Units (GPUs). To reduce filter 
smoothing artifacts, especially for thin retinal layers, it might be beneficial to use non-linear 
adaptive filters (e.g [27].) for image denoising and edge detection. Lastly, we believe that it is 
important to compare the performance of this and other academic or commercial SDOCT 
segmentation algorithms for different imaging setups on similar test data sets. We are 
preparing clinical manuscripts to address these issues. 
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